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1. INTRODUCTION

Adiabatic shear bands form during high rate shearing of a solid when
thermal softening is stronger than the combined effects of strain hardening
and strain rate hardening. In homogeneous shearing, with a constant
applied strain rate, the stress rises at first then reaches a maximum at a
critical strain where all hardening and softening mechanisms are in
balance, and finally begins to fall with increasing strain. Small initial
imperfections, that is, small spatial fluctuations in initial temperature,
strength, strain rate, and so forth, remain small until the critical strain
is passed. Thereafter an imperfection begins to grow, slowly at first, but
later at an extremely rapid rate, and as it grows, the deformation tends to
concentrate in a narrow band. In the core of the band the temperature and
plastic strain rate shoot up during this latter stage while the stress
falls precipitously due to rapid thermal softening. In the outer regions
the gtress ulso falls rapidly due to momentum transfer from the core, and
eventually the outer material returns to an elastic state as the plastic
strain rate and plastic working fall to zero. Since there is then no more
plastic heating in the outer region, the temperature rise ceases there, and
a strong temperature contrast develops between the interior and exterior of
the band.

Departure from the unstable homogeneous deformation, as described
above, continues to develop with the actively deforming plastic region
vecoming narrower and narrower and the temperature gradient becoming
steeper and steeper, so that if the process 1is continued long enough, heat
conduction becomes a significant factor in removing excess energy from the
interior of the band and may provide a limiting mechanism on further growth
of the band. Therefore, in the final stages, deformation may proceed in a
quasi-steady fashion.

Computations tend tc support the preceeding picture of transition from
a nearly homogeneous to an extremely inhomogeneous deformation, Wright,

Batral 2 although the limiting effect of heat conduction has not yet been

confirmed by a complete, unsteady calculation that begins with a small per-
turbation from homogeneous flow and ends with a quasi-steady shear band.
Accordingly, it seems worthwhile to examine the full equations of thermo/
visco/plasticity in one dimension for the existence of steady solutions,
that is, solutions that are independent of time. 1t turns out that such
solutions do exist, and at least for the constitutive equations discussed
in this paper, they can be expressed as simple quadratures,

In this paper the general nature of these quadratures is exhibited, and
for purposes of comparison, their predictions for four different visco/
plastic flcw laws are calculated, each law having first been calibrated to
agree among themselves under hypothetical conditions of homogeneous, high
rate testing.

2. EQUATIONS OF MOTION AND GENERAL SOLUTIONS

A 3imple version of one dimensional shearing in a visco/plastic mater-
ial with thermal softening and heat conduction may be expressed as follows,

1




R

Ay

FPErrl el

O\.I=S,

4
s = U(V’y - Yp)
6 = (k6, ), Y (1
pC ( y) y + SYp )

f(s,0,y =
(s Yp) K

K MYP
The first equation expresses the balance of linear momentum where s is
shear stress, ¢ is density, and v is particle velocity in a direction per-
pendicular to the spatial coordinate y. The comma denotes partial differ-
entiation with respect to y, and the dot denotes partial differentiation
with respect to time t. The second equation states that the stress rate is
proportional to the elastic strain rate, #p being the plastic strain rate,

and 1 the elastic shear modulus. The third equation expresses the balance
of energy, ignoring thermal expansion and thermoelastic effects, but
including heat conduction. The temperature, measured from a convenient
reference level, is 8, ¢ is specific heat, and k is thermal conductivity,
which may depend on temperature. Plastic work is regarded as being con-
verted completely to heat, so that the rate of plastic work acts as a
source in the energy equation. The fourth equation states that yielding is
determined by a sequence of surfaces in stress/temperature space with plas-
tie strain rate as a parameter where k¥ 13 a measure of work hardening. The
last equation is a postulated relation for the evolution of x where M is a
constitutive function that depends on s, 6, and x.

Equation (1.4) is assumed to apply if f(s,8,0) > x, and then it is
further assumed that (1.4) can be inverted uniquely to give

?p = g(s’e’K) (2)
where g has the same sign as s to ensure that plastic work is always posi-
tive, and gg > 0, ge > 0, and g'< < 0, subscripts denoting differentiation

with respect to the argument indicated. If f(s,6,0) <«, then ?p = 0.

This is a fairly general version of viscoplasticity as an overstress
phenomenon, which is broad enough to include those in common usage, as

described by Malvern3 for example, including those that do not use a
definite yield surface at all. In the latter case, (2) is postulated right
from the start. Then there is always some plastic flow, although the plas-
tic strain rate becomes extremely small when the stress falls below some
evolving reference level. In a further generalization, the function M, f,

and g could depend on yp as well. 1In any case the variables Yp and ¥ both

have the status of internal variables controlled respectively by (2) and
(1.5).




In a steady shearing motion the stress, particle velocity, and tempera-
ture depend only on position, but not on time, so that equations (1) become
ordinary differential equations. Inspection of equations (1) and (2)
reveals that general solutions do not exist unless k = 0 throughout the
region under consideration, and g does not depend explicitly on Yp. That

is to say, saturation has occurred so that there is no further work harden-
ing and the plast.c strain rate 1s independent of further levels of plastic
strain. From (1.4) and the requirement that g £ 0 inside the shear band it
follows that M(s,6,<) = 0. Let it be assumed that this equation can be
solved for « as a function of s and 0, say « = k(s,8). The steady equa-
tions may now be written as follows.

s, =0
y

V,

g(s,98,k) (3)

ke, ), + sg(s,8,k) =0
( y) y g( )
where « = k(s,8). Equations (3) have the solution

s = 3 = const

2 o¢c
L(ke, )" = §f k(8') g(s,0',k(s,8')) de' (%)

7 0
57 [°¢ L ke,
Vel \/3 3] k(8') g(s,06',%(s,8')) de' ~7
6.

Equation (4.2) may be solved by quadrature to obtain 6 as an even function
of y, where ec is the temperature at y = 0, which is the center of the

band. Equation (4.3) follows from (3.2) with

- dy
v [ e dé + const

after making use of (4.2), or directly from (3.3) after making use of (3.2)
and (4.1). 1In (4.3) the velocity is measured relative to the center of the

band and the + sign holds for +y so that v i3 odd in y. A complete solu-
tion requires specification of 8 and ec, or the equivalent, so in general

there 1s a two parameter family of steady solutions.

3. EXAMPLES

The nature of the solutions given above is best illustrated by consid-
ering special cases. Four examples of viscoplastic flow laws, which have
been used by various researchers in a discussion of shear bands, and all of
which fit into the general framework outlined above, are the Arrhenius law

L R R sl




(eg., see Shawki, et al.u), the Bodner-Partom-Merzer law (eg., see
MerzerS), a simple power law (eg., see Shawki, et al.u), and the Litonski

law (eg., see Wright and Batra1’2 or Buvnss). The steady shearing solu-
tions that result from these four laws may be compared after each has been
calibrated against the response characteristics of a hypothetical material.
Accordingly, let it be supposed that for a series of standard, high rate,
isothermal tests, the properties of a typical high strength steel may be
summarized as follows.

Test Temperature: 8 = 300° K
Strain Rate: ¥, = 1000 s
Flow Stress: s = 0.5 GPa
Stain Rate Sensitivity m = 0.02
Thermal Sensitivity p = 0.2
Where m and p are defined as follows:
B CoRR

In all cases considered from here on, both the thermal conductivity k and
the strain hardening parameter « are assumed to be constants for ease of
computations.

It is convenient to nondimensionalize the plastic strain rate, tempera-
ture, particle velocity, and y-coordinate as follows. Let r, n, u, and
£ be the four nondimensional variables with scale factors ', T, U, and Y
with a possible shift q in the zero for temperature.

Yp < fr, 6=Tn+q, v==U, y-=YE
Then with a nondimensional flow law

r = g(n),

where g(-) may depend on s/x or other physical parameters as well, equa-
tions (4.2) and (4.3) can be expressed as

) e e ] ncdn
ng = g(n) dn, u = g(n) dn} ,£ = " (6)
n n n

where e corresponds to the temperature in the center of the band. The

three nondimensional variables r, U, and £ are now given parametrically
through the nondimensional temperature. The scale factors for plastic

10




strain rate and temperature are to be chosen in a convenient manner, and
the scale factors for distance and velocity are chosen as follows

s

el 13

2%~5—§ U= {2kt 735} (1)

Each of the four flow laws will now be considered in turn.

3.1 The Arrhenius Flow Lawu.

Written in the form of (2) this flow law is given by

- _y__ _ =
Yp = Foexp { 55 (k s)} (8)
where fs is a limiting strain rate, V is activation volume, and b is activ-

ation energy per OK. Note that there is no fixed yield surface where plas-
tic flow ceases, and that the plastic strain rate approaches an upper
limit of I; as 8 approaches k from below or as temperature becomes large.

With scale factors for plastic strain rate and temperature chosen to be
r=r , T=Y8(&_1 (9)
b s

the flow law takes the nondimensional form
1

r=e n {10)

To be consistent with the calibrating conditions, it is necessary that

LA 3x107° %K-m/Joule , « = 0.6 GPa , [ = 2.2026x10" g™

3.2 The Bodner-Partom-Merzer Laws.

. Again written in the form of (2), this flow law takes the form

.

: ) <%+ b)
. ) K (11)
P

- e -

11
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where a > 0 and b < 0 are material constants., There is no fixed yield
surface, and for v/3 8 less than kK (the usual case), as the temperature
increases to large values, the plastic strain rate tends to a limiting

=1
value of 2D°e % . The scale factors for plastic strain rate and tempera-

ture are chosen as follows.

[

=20, T=a (12)

The plastic flow law is now given by
1
reexp -7 (~3 (13)

and with b arbitrarily set equal to zero, the calibrating conditions
require that

2)-a/8

m = g (K2/3§ and 2p = ln(K2/3§2).

Thus it follows that

Kk = 1.05777 GPa, a = 1653.75 °K, D, = h.6618x10u gt

3.3 The Simple Power Lawh.

This flow law, written in the form of (2), is

1 o5\
c _» (8\n [+}n
yp = I‘o <K> <80> (14)
and again there is no fixed yield surface. With the obvious choices for
scale factors
P=T , 7=06_, (15)

the plastic flow law becomes

- n
r= (E) n (16)

and the calibrating conditions require that m = n and p = v. There is no
unique choice for the other constants, but the simplest choices are

fo= 103 57" « = 0.5 GPa , 8_ = 300 °K.

12
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3.4 The Litonski Law! 2 °.

In the form of (2) this flow law may be written

- 1
. 1 s 1
Y. =13 : n-1p ° (17)
p b [K[l - a(6 - 608 ]

and now there is a definite yield point, where plastic flow ceases, given
by s = K{l-a(e - BOﬁ. Each of the other three flow laws could of course be

modified to include a definite yield point if desired. The scale factors
for plastic strain rate and temperature are chosen to be

P= (+oy)p , 7=[1-ale,-06)]/a , (18)

and in this case q = eo + [1 - (s/«x)]/a. 1In this equation 60 and ?; are

the temperature and plastic strain rate in the center of the band, and the
factors T and q are obtained from the change of variable

n= la(f - 60) + 8/ - 1]/[1 - a(6c - 60)]. The plastic flow law in these

variables is now given by

1

r= [ 0] - A+ DT

(19)
The calibrating conditions require that

by
p ab

m=ny7 , P70 -
1 + byp 1 a(b 60)

With 80 and b arbitrarily chosen to be 300 °K and 1000 s'l, then n = m to a

close approximation, a = %—x 10-3 °k and « = 0.37929 GPa. With the aid of

the flow law (17) the scale factors Y and U may be rewritten as

_ ntl _ 1-n
’kb ‘c 2 ]2k ‘e, 2
Y = K (1 + pr) R U= Yab (1 + pr)

In this form it is clear that solutions depend only weakly on b for large
values of b,

In order to compare the four flow laws, the steady shearing solution
has been computed for the six cases shown in the Table, where the tempera-
ure and strain rate at the center of the band have been fixed as the two
defining parameters.

13
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Table 1. Cases Considered

CASE A B c D E F
0 500 °k 400 °k oo %k 500 °k 500 %k 600 °k
¢ 103 3'1 10u g1 5x10u 3-1 10u a1 5x10u g1 5x10u 8-1

P

Except for the Bodner-Partom-Merzer law at the higher strain rates and
temperatures, the general configuration of the solutions for the four laws
are broadly similar to the curves shown in Figure 1. (The figure actually
represents the Litonski law for either case B or D.) Plastic strain rate
is highest at the center of the band, but falls rapidly to much smaller
values toward the sides where it levels out. Temperature also is highest
in the center and falls off toward the sides, but as the plastic strain
rate levels off, the temperature gradient tends toward a constant negative
value, so that the heat generated by plastic work is just balanced by heat
conduction. Particle velocity relative to the center of the band increases
rapidly at first and then levels off and approaches a constant value
asymptotically.

The figure shows that there is no one definitive width to the band, so
for purposes of numerical comparison, the width, denoted d, will be arbi-
trarily defined as the distance from the center of the band at which the
plastic strain rate falls to one tenth of its maximum value. In the figure
this distance is shown by the tick mark on each curve. At that distance
the temperature gradient and the particle velocity are within a few percent
of their asymptotic values. The following six tables compare the widths,
temperatures, velocities and stresses for each of the six cases listed in
Table 1. The value used for the thermal conductivity is that for a typical

steel, k = 46.7 J g p7t ¢,

Table 2. Case A: 6, = 400 °K, §° = 103 57"
Width Temperature Velocity Stress
d, ym 8(d), %k v(d), m/s s, GPa
Arrhenius 143.7 325 0.079 0.U67
B-P-M 129.4 337 0.075 0.468
Power 151.4 317 0.081 0.472
Litonski 137.9 334 0.071 0.467
14
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Velocity, v

v

Nondimensional

Strain Rate, r; Temperature, 7;

i Distance from Center, §

b Figure 1. Typical Distribution of Plastic Strain Rate, Temperature,
“-?'. and Velocity vs Distance from the Center of a Shear Band.
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Arrhenius

B-P-M

Power

Litonski

Arrhenius

B-P-M

Power

Litonski

Arrhenius

B-P-M

Power

Litonski

Table 3. Case B: o = 400 °K, i = 10" s~
Width Temperature Velocity
d, um 6(d), °k v(d), m/s
48.5 308 0.272
54,3 271 0.343
46.8 317 0.251
y2.7 334 0.221

Table 4. Case C: B, = oo OK, ?: = 5x10u s-1

Width Temperature Velocity
d, um g (d), % v(d), m/s
23.1 290 0.657
33.9 48.6 1.486
20.6 317 0.553
18.8 334 0.487

Table 5. Case D: 8 _ = 500 °K, \'(: =10t g7
Width Temperature Velocity
d, um 6 (d), °k v(d), /s
55.7 385 0.312
62.1 339 0.393
53.4 397 0.288
42.7 439 0.221

Stress
s, GPa

0.497
0.510
0.494

0.489

Stress

s, GPa
0.519
0.595
0.510

0.505

Stress

s, GPa
0.u472
0.487

0.473

0.u454




y 1

Table 6. Case E: 6 _ = 500 °K, 7: = 5x10° 8~
Width Temperature Veloclity Stress
4, um 6(4), O v(d), m/s s, GPa
Arrhenius 26.3 367 0.749 0.499
3-P-M 38.0 56.6 1.666 0.591
Power 23.5 397 0.632 0,488
Litonski 18.8 h39 0.487 0.469

) y -
Table 7. Case F: 6 _ = 600 %, y: = 5x10" s~

Width Temperature Velocity Stress

d, um 8 (d), ¢ v(d), m/s s, GPa
Arrhenius 29.4 435 0.838 0.478
83-P-M —— —_— emmme ema-
Power 26.2 u76 0.706 0.u4m
Litonski 18.8 543 0.487 0.433

The values for the Bodner-Partom-Merzer law are not shown for the last
c3se because, as in cases C and E above, the temperature at the edge of the
band seems unrealistically low. This seems to be caused by the extreme
sensitivity to temperature of this flow law and by the moderately high
central strain rate, which i3 more than half the limiting strain rate.
Figure 2 shows the computed profiles for the B-P-M law for case E. Note
that the distribution of the higher plastic strain rates is much broader
than the distribution shown in Figure 1 and that it plunges much more
rapidly. Furthermore, the plastic strain rate does not vanish until the
temperature reaches absolute zero.

Figures 3-5 compare the width, edge velocity, driving stress, and edge
temperature for all four flow laws with a fixed central temperature of

400 °K and increasing plastic strain rate. The widths all decrease sharply

with increasing strain rate, whereas the edge velocity and driving stresses ‘
show marked increases. The trend in each case is the same, and the widths

even agree fairly well, but the edge velocity and driving stress for the

8-P-M law depart sharply from the others at the highest strain rate. Since

the temperature gradient in every case becomes steeply negative toward the

adge 3f the band, a comparison of temperatures at the distance 4 from the

center is only a rough, but still useful, measure of the temperature con-

trast to be found across a shear band. Only the B-P-M law shows a strong

affect »f increasing strain rate whereas the other three have only a modest

temperature drop of 60-110 k.
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Velocity, u

Nondimensional
Temperature, 7

Strain Rate, r;

Distance from Center, §

Figure 2. Distribution of Plastic Strain Rate, Temperature, and
Velocity vs Distance from the Center of a Shear Band
According to the B-P-M Law for a High Central Strain Rate.
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For fixed strain rate, Figures 7-10 show the effect of central tempera-
ture on width, edge velocity, driving stress, and temperature contrast.
Once again the B-P-M law appears to be significantly different from the
other three laws. The width and edge velocity for the Litonski law are
independent of temperature, whereas the others show an increase with
increasing central temperature, with the B-P-M law lying well above the
others. Driving stress decreases with temperature in all cases, with the
8-P-M law requiring the highest stresses and showing the least influence of
increasing temperature. Temperature contrast from the center of the band
to a distance d away from the center shows the most marked differences
among the four flow laws. The Litonski law is almost constant with
increasing central temperature and shows the least contrast. The Arrhenius
and power laws show somewhat greater contrast and increase slightly with
increasing temperature, and the B-P-M law shows a very large and strongly
temperature dependent temperature contrast.

4, DISCUSSION

Since steady shearing solutions depend on a saturation effect in work
hardening and, in their outer regions, tend asymptotically toward finite
temperature gradient and particle velocity, as well as constant stress
throughout, they cannot give a complete solution if work hardening con-
tinues, or if the temperature gradient is required to vanish at the bound-
ary, or if the imposed boundary conditions are truly unsteady.

However, if the parameters that define a steady solution are only
slowly varying functions of time, then these solutions may play the role of
central boundary layers for more complete dynamic solutions. 1In fact, when
time i3 scaled according to the rule t = 1/8 in the full dynamical equa-
tions, then the steady equations result in the limit as § - 0. With T
being held fixed t » », so the steady equations apparently have the inter-
pretation of holding asymptotically at large times. In that case the outer
morphological characteristics of these steady solutions would be used to
derive central boundary conditions for the exterior solution, that is, the
solution away from the shear band. This possibility will be explored in a
future paper.

Since the rate and temperature conditions to be found in the center of
a band differ considerably from the calibrating conditions, it is to be
axpected that the structure of a real shear band would differ somewhat from
that predicted by any particular hypothetical rate law. Thus, it is some-
Wwhat surprising that the morphology predicted by the four rate laws in this
paper agree as well as they do. Furthermore, although the measure of width
1 is sonewhat arbitrarily chosen, the values calculated for d, based upon
physical constants for steel, seem to be of the right order of magnitude
according to actual physical measurements on shear bands. For example,

Moss7 shows a1 photomicrograph and data plots for a shear band in a high
strength NiCr steel where the strain rate apparently dropped by an order of
magnitude every 10 to 15 microns. No definitive comparison can be made at
this time, however.
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As one final comment, it should be noted that central temperatures and
temperature contrasts across the band need not be large. Even for very

narrow profiles, the highest temperatures achieved need be nowhere near the
melting temperature for the material.
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